Compactness in L 1 , D - P Operators , Geometry of Banach Spaces

نویسندگان

  • Maria Girardi
  • MARIA GIRARDI
چکیده

A type of oscillation modeled on BMO is introduced to characterize norm compactness in L 1. This result is used to characterize the bounded linear operators from L 1 into a Banach space X that map weakly convergent sequences onto norm convergent sequences (i.e. are Dunford-Pettis). This characterization is used to study the geometry of Banach spaces X with the property that all bounded linear operators from L 1 into X are Dunford-Pettis. The main result of this paper is a BMO-style oscillation characterization of L 1-norm compactness. From this result we obtain a characterization of the bounded linear operators from L 1 into a Banach space X that map weakly convergent sequences onto norm convergent sequences (i.e. are Dunford-Pettis). With such characterizations in hand, we study the geometry of Banach spaces X with the property that all bounded linear operators from L 1 into X are Dunford-Pettis. One way to insure that a relatively weakly compact set K in L 1 is relatively norm compact is to be able to nd, for each > 0, a nite measurable partition of 0; 1] such that for each f in K and each A in , osc f A ess sup !2A f(!) ? ess inf !2A f(!) : This condition is too strong to characterize norm compactness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilateral composition operators on vector-valued Hardy spaces

Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$‎. ‎We investigate some operator theoretic properties of‎ ‎bilateral composition operator $C_{ph‎, ‎T}‎: ‎f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq‎ ‎+infty$.‎ ‎Compactness and weak compactness of $C_{ph‎, ‎T}$ on $H^p(X)$‎ ‎are characterized an...

متن کامل

Linear operators of Banach spaces with range in Lipschitz algebras

In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

On p-Compact Sets in Classical Banach Spaces

Given p ≥ 1, we denote by Cp the class of all Banach spaces X satisfying the equality Kp(Y,X) = Πp(Y,X) for every Banach space Y , Kp (respectively, Πp) being the operator ideal of p-compact operators (respectively, of operators with p-summing adjoint). If X belongs to Cp, a bounded set A ⊂ X is relatively p-compact if and only if the evaluation map U∗ A : X ∗ −→ ∞(A) is p-summing. We obtain p-...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991